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Dynamical properties of critical and paramagnetic spin 
fluctuations in anisotropic Heisenberg magnets 

S W Loveseyt and E Balcart 
t DRAL, Rutherford Appleton Laboratory, Oxfordshire OX1 1 OQX. UK 
t Atominstirut der Osterreichischen Universigten, A-1020 Wien, Austria 

Received 5 September 1994 

Ahstract. Decay rates for long-wavelength spin fluctuations in the standard x-y model, and a 
second model described by the sum of the full Heisenberg exchange interaction and a single- 
site aniso@opy, are calculated on the basis of a coupled mode theory in which the isothermal 
susceptibilities are consistent with corresponding spherical models (in consequence, quantum 
fluctuations are absent). Rsults for the decay rates are provided for two- and three-dimensional 
lattices. and ferromagnetic and antiferromagnetic exchange interactions. Their dependence on 
the wave vector, q. and the inveee comlatipn lengths are derived ~fmm integral equations 
that admit homogeneous functions as solutions. The decay rates may thus be expressed as 
qdpR1(q/Ko)and q(d+21pR2(q/~. q / K o )  where RI and RZ are, respecti+ely, scaling functions 
for the x-y and ferromagnetic single-site anisotropy models, d is the spatial dimension, and K 
(KO) is b e  out of plane (in plane) inverse correlation length. Analytical u d  numw;dialces of 
the scaling functions are presented for the limits of main physical interest. 

1.  introduction 

We report findings from calculations of the time dependence of spin fluctuations in two 
magnetic models that have in common lattice isotropy and spin space anisotropy: (I) the 
x-y model, in which the usual Heisenberg exchange interaction between neighbouring spin 
variables, [Sa], is truncated to two of the three Cartesian components of the spins, usually 
labelled the x and y components, and (10 the full Heisenberg exchange interaction plus 
a single-site anisotropy of the form -B(S:)2. The latter model is believed to furnish an 
appropriate description of a number of magnetic materials, e.g. the rutile antiferromagnets 
MnFz and FeFz (Collins 1989, Cowley 1987). Early studies of critical spin fluctuations 
in model II are reviewed by Kawasaki (1976), and a variant of it is included in the range 
of models studied by Bagnuls and Joukoff-Piette (1975). The x-y model datexback to 
1956 and it is now a standard model in statisticalmechanics; its static properties calculated 
for quantum spins (mainly spin-;) are reviewed by Betts (1974), Hohenberg and Halperin 
(1977), and Mattis (1985). The x-y model is relevant to the interpetation of properties of 
liquid helium and displacive transitions exhibited by ferroelectric materials, in addition to 
some anisotropic magnets. In this model, the order parameter, the total x component of the 
spin, say, does not commute with the Hamiltonian. In~fact, both models have this feature, 
which has a profound effect on their dynamical properties, as we will see. The total L 
component of the spin in the x-y model and the model with a singllesite anisotropy, on 
the other hand, is a constant of the motion. If the anisotropy parameter, B ,  is negative the 
anisotropy suppresses fluctuations in the z components of the spins, and with an increasing 
magnitude of the anisotropy parameter the model approaches a planar system. While similar 
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to the x-y model, of course, the planar limit of model II is a fundamentally different system 
since it has almost two spin degrees of freedom, whereas in model I all three spin degrees of 
freedom fully participate in its static and dynamical properties. By way of an illustration of 
the differences in the properties of the two models, we anticipate the results for the dynamic 
critical exponent, z .  For model I (ferromagnetic II) we find z = d / 2 ( i ( d  +2)) where d is 
the spatial dimension of the lattice. The different values of z for the two models is due in 
the x-y model to the absence of out of plane exchange interactions, so this component of 
the spin density mimics a perfect paramagnet with a Pauli susceptibility. 

Both spin models taken on a three-dimensional (3D) lattice are believed to display 
long-range magnetic order below a critical temperature, Tc. Previous work on their 
dynamical properties has largely focused on the nature of the critical fluctuations at. and 
in the immediate vicinity of, the continuous phase transition at T,. By contrast, for two- 
dimensional (2D) lattices the models do not appear to support long-range magnetic order at 
a finite temperature; for a review of the static properties, see the article by Landau (1993). 
This observation for the x-y model is supported by the Mermin-Wagner (1966) theorem 
for models with a continuous spin symmetry. There is a subtlety with the quantum x-y 
model on a 2D lattice, for there is some evidence that the static susceptibility, specific heat, 
etc. diverge at a finite temperature. An implication is that below the transition the spin 
autocorrelation function does not decay exponentially but rather as some power law. The 
nature of the phase transition is possibly akin to the one believed to occur in the pure planar 
model, where it is ascribed to a spontaneous generation of vertex (topological) excitations 
(Berezisnkii 1971, Kosterlitz and Thouless 1973). In conclusion, for ZD, quantum versions 
of the models under investigation OF knowledge about the static correlations is by no means 
complete, to the extent that the ground state of the x-y model is not known (for any spatial 
dimension). 

Our models are defined to possess the static.correlation functions of the appropriate 
spherical models. In consequence, our models do not contain quantum mechanical 
fluctuations. The spherical models in 3D support long-range correlations at a finite 
temperature, and in ZD at finite iemperature there are no long-range order and no 
discontinuities in macroscopic response functions. It is found that in ZD the spin space 
anisotropy increases in correlation length compared to its value in the isotropic Heisenberg 
model, i.e. as a result of the spin anisotropy the 2D models are closer to long-range magnetic 
order. 

Our investigations of model I, II have been conducted for ZD and 3D lattices with 
ferromagnetic (F) and antiferromagnetic (m) exchange couplings (NB, for the x-y model, 
and model 11 with planar anisotropy, the critical fluctuations do not depend on the nature of 
the exchange coupling). Calculations are based on the coupled mode approximation for spin 
fluctuations. For a ferromagnetic coupling there are two coupled equations of motion, for 
the interacting in plane (x, y) and out of plane spin fluctuations, and for an antiferromagnetic 
coupling the number of equations is doubled because important fluctuations occur at the 
Brillouin zone centre and the wave vector that defines the incipient antiferromagnetic 
ordering. In the coupled mode approximation, each equation of motion is an integral- 
differential equation that relates the spin response function to its memory function, which is 
a spatial convolution of products of spin response functions, see e.g. the book by Lovesey 
(1986). To ascertain the nature of the dynamic spin fluctuations it is sufficient to study the 
decay rates for the relevant, long-wavelength fluctuations (this is sometimes referred to as the 
use of a Markovian approximation). While this level of treatment of the equations of motion 
does not provide insight into possible deviations of power spectra from a Lorentzian shape, 
decay rates can be extracted from appropriate experimental data (Collins 1989, Cowley 
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1987). Hence, by calculating decay rates, which are functions of the wave vector and 
temperature, we characterize the nature of the relevant fluctuations and provide quantities 
that can be compared to experimental findings in the appropriate cases. The decay rates for 
both models are homogeneous functions. We provide analytical and numerical values for 
the scaling functions in the limits that are of main physical interest. 

With regard to 2D systems, there is a dearth of magnetic materials that are really well 
described by either of our two models, in the manner of the very strong evidence that the 
AF isotropic Heisenberg model describes RbMnF3. However, appropriate materials might 
be discovered. For the moment, our findings for the two models on ZD lattices are a 
contribution to the Zeitgeist in the statistical mechanics of magnetic models. To the best of 
our knowledge, there is no prior work on the application of the coupled mode theory to the 
models we have completely specified in terms of spherical models and the coupled mode 
theory. 

The model Hamiltonians are given in the next section, and the corresponding coupled 
mode equations, on which our calculations of the decay rates are based, are set out in 
section 3. Section 4 is given over to a detailed discussion of static spin correlation functions, 
which complete the specification of the models. The static susceptibilities are derived 
from the coupled mode equations via’ the f sum rule, and they are consistent with the 
standard spherical model. Decay rates for our two models, on ZD and 3D lattices with both 
ferromagnetic and antiferromagnetic exchange couplings, are the subjects of sections 5 and 
6. Our findings are gathered and discussed in section 7. 

2. Hamiltonians 

Classical spins {Sa}, are placed at sites, labelled by the index U ,  on a lattice with spatial 
dimension d. An exchange interaction, of strength J ,  operates between nearest-neighbour 
spins. The x-y model is defined by the Hamiltonian 

(I) ‘H=- 

where x and y denote Cartesian components of the 3D spins, and the site labelled ( a  +a) is 
one of r nearest neighbours to the site labelled a .  Much the same notation is required for 
the fully isotropic Heisenberg model with the addition of a single-site magnetic anisotropy. 
We sometimes, for brevity. refer to this model as model 11, and it is defined by 

In (2.1) and (2.2), J > O ( c  0) is referred toas a ferromagnetic (antiferromagnetic) exchange 
coupling. The anisotropy parameter in (2.2) takes all values; B > 0 yields a uniaxial 
anisotropy, and B < 0 yields a planar anisotropy that curbs out of plane (the x-y plane) 
spin fluctuations. 

3. Coupled mode equations 

The time dependent spin relaxation function is denoted by F ( q ,  t ) ;  it is formed from the 
autocorrelation of spatial Fourier components with wave vector q of the spin density. For 
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quantities belonging to the in plane correlations (defined to be the x and y Cartesian 
components of the spins) we attach a subscript zero, e.g. Fo(q, t )  is the spin relaxation 
function formed with the x component of the spin density, which is identical to the relaxation 
function formed with the y component of the spin density. Out of plane spin fluctuations 
(2-2 spin autocorrelations) are described by F(q ,  t) .  

The relaxation functions are calculated in terms of a memory function. For the out of 
plane fluctuations the memory function is denoted by K ( q ,  t ) ,  and 
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dt'F(q, t ' ) K ( q ,  t - t'). (3.1) 

Here, the dot on F ( q ,  t )  denotes a time derivative. A similar equation holds for Fo(q, t ) ,  
in which the memory function is Ko(q, t).  

The coupled mode approximations for K ( q ,  t )  and Ko(q, t )  are derived in the standard 
manner. In essence, K ( q ,  t )  is the relaxation function formed with the first time derivative of 
S;, which is derived by evaluating the commutator of S; with the appropriate Hamiltonian. 
The relaxation function thereby obtained invoIves four spin operators. The final step, in 
deriving the coupled mode approximation to K ( q ,  t) ,  is a particular closure of the equations 
of motion, achieved by a factorization of this relaxation function in the memory function 
in to products of two-spin relaxation functions, nameIy F(q ,  t )  and Fo(q, t ) .  So, in the 
end, Fo(q, r), for example, is expressed in terms of Ko(q, t),  which in the coupled mode 
approximation is a spatial convolution of Fo(q, t )  and F ( q .  t ) :  the memory function for 
F ( q ,  t )  contains Fo(q. t )  and not F ( q ,  t ) .  Thus, the equations for the spin relaxation 
function of immediate interest have the form of integral-differential equations, and F ( q ,  t )  
and Fo(q, t) are self-consistent solutions. 

Following through the approximation scheme for the memory functions described in the 
foregoing paragraph we find the following key results. 

3.1. Model I 

The memory functions for the x-y model are 

x(qW(q.  t )  = W - J / N z E ( y q - ,  - Y~)*XO(P)XO(~ -p)Fo@, t)Fo(q -P, t )  

and 

(3.2) 
P 

xo(p)Ko(q, r) = T ( z r J / N ) Z C y , Z X o ( p ) X ( q - ~ ) F o ( p , t ) F ( q - ~ p , t ) .  (3.3) 
P 

In these expressions, yq is a geometric factor that depends on the lattice dimensionality and 
its point group symmetry, 

The other new quantities appearing in (3.2) and (3.3) are the wave vector dependent 
isothermal susceptibilities for out of plane, ~ ( q ) ,  and in plane, xo(q). spin fluctuations. 
These quantities are the subject of the following section. 
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3.2. Model I1 

The memory function for the out of plane fluctuations satisfies an equation that has exactly 
the same structure as (3.2), and the value for xo(q) appropriate for the Hamiltonian (2.2). 
Note that the memory function K ( q ,  t )  vanishes in the limit of long wavelengths. This 
property is a consequence of the fact that for both models the z component of the spin 
density is a constant of motion. 

The in plane memory function for model I1 is 

xo(dKo(q9 t )  = V/N2) z P J ( ~ q - p  - VP) + 2 B ) 2 x 0 ( P ) x ( q  - p)Fo(P, O F ( q  - p ,  i). 
P 

(3.5) 

In all these expressions, T is the temperature measured in units of Boltzmann's constant, 
and N is the number of spins on the lattice (equal to the number of lattice points). 

4. Static spin correlations 

The coupled mode theory of spin fluctuations requires the isothermal susceptibilities as 
inputs. We have decided to use values obtained from the appropriate spherical models 
(Mattis 1985). Since the pairs of susceptibilities for our two anisotropic models, to the best 
of our knowledge, have not appeared in the literature, it is prudent to discuss some of their 
features. We first outline our method for calculating the spin correlation functions and the 
susceptibilities, which follows an approach by Hubbard (1971) to the isotropic Heisenberg 
magnet. 

In this approach, the defining equations are obtained from the f sum rule. This means 
that one uses short-time properties of the memory function, and the ensuing spin correlation 
functions are obtained by solving the defining equations for arbitrary wave vectors. In the 
context of the early development of the coupled mode theory, such an approach might 
not seem entirely consistent, for the coupled mode theory of critical spin fluctuations 
was developed with the aim of describing the long-time behaviour of long-wavelength 
fluctuations, i.e. the modes that witness the critical fluctuations. From this stance there 
is no good reason to be confident about the value of the theory at short times and short 
wavelengths, both of which enter the approach to calculating the static correlations from 
the f sum rule. However, it has been shown that coupled mode theory, of the variety used 
here, is very reliable at all wave vectors and temperatures, including an infinite temperature 
(Cuccoli ef nl 1989, Lovesey et nl 1994). In our opinion this positive experience negates 
reservations about the use of the f sum rule to obtain the static correlations. In the present 
case, where we need the in plane and out of plane susceptibilities the approach has the real 
advantage of providing mutually consistent expressions. Our view is that the models under 
discussion are defined to possess the static correlations of the appropriate spherical models. 

Returning to the approach to static correlation functions based on the f sum rule, the 
defining equations are derived from the identity 

F(q,  0) = - K ( q ,  0) 

x(q)F(q ,  0) = -([tSL(q, 'HI, SY-q)l) 

(4.1) 

(4.2) 

which follows from (3.1) and the normalization F ( q ,  0) = 1, and the f sum rule 
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where the angular brackets denote a thermal average. A similar set of relations exist for 
the in plane fluctuations, with the spatial Fourier component of the spin density F(q) 
replaced by Sx(q). The nested commutates in (4.2) are evaluated with the appropriate spin 
Hamiltonian ([S"(q), l-t] is required to obtain an expression for Sa(q), which is the building 
block of the coupled mode approximation to the memory function). 

4.1. Model I 

On following through the programme ~~ outlined in the foregoing paragraphs, we find for the 
x-y model 
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x ( q )  = N I P  (4.3) 

and 

xo(d = N / ( p  - 2rJy.d. (4.4) 

The parameter /I is related to the temperature. To this end, we demand 

{SU . Sa) = S(S + 1) (4.5) 

where S is the magnitude of the spin variable. The spin correlations are provided by 

(sisi)  = ( ~ / ~ * ) C x ( q ) e x p ~ i q . ( ~ ,  - ~ b ) ]  (4.6) 

and a corresponding expression for (S:Si) = (SiS,'). On introducing as a unit the 
molecular field approximation to the critical temperature of the isotropic Heisenberg magnet, 
T,, = 2rJS(S i- 1) j3 ,  one finds 

9 

TI(1/@) +2Z(p/2rJ)l = 3Tm. (4.7) 

In this expression, I ( x )  is the standard extended Watson integral 

(4.8) 
4 

For a square lattice 

I ( x )  = (2jrx)K(l/x) (4.9) 

where K(y) is the complete elliptic integral of the first kind. It is not possible with 3D 
lattices to express I ( x )  in terms of standard, tabulated functions; useful analytic results are 
given by Joyce (1972), and Mannari and Kawabata (1964) have prepared tables of numerical 
results for the three cubic lattices. 

The result (4.3) might easily have been anticipated; it is the susceptibility for a perfect 
paramagnet and this is appropriate for the out of plane fluctuations since no exchange force 
exists between z components of the spin in the x-y model. The result (4.4) for  the in plane 
susceptibility, taken with (4.7) for the temperature scale, is the standard spherical model. 

In the limit of high temperatures, T >> I ,  Z(p) - ( ~ / J L )  and the temperature scale is 
no different from that for the isotropic Heisenberg model; p - T for high temperatures. 
The smallest physically sensible value of the temperature parameter, p, is 2rJ .  
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Table 1. Values of the critical temperature (Tc /J )  of the 3~ x-y spherical model for 
S = f ,  calculated from (4.7). The corresponding results obtained using high-temperature series 
expansions are taken from the review article by Bet= (1974). Results are given for the three 
cubic lattices. Results for the isotropic Heisenberg magnet (S = 4) are included for comparison. 
NB the critical exponent v ,  for the inverse correlation length, has the value 1 (,$) forthe spherical 
model (S = 2 .  x-y model), and q = 0. 1 

SC BCC FCC 

Spherical x-y model 2.232 ~ 3.169 4.879 
model isotropic 1.978 2.871 4.462 

Series x-y model 2.020 2.908 4.523 
expansion isompic 1.68 2.53 4.M 

The integral I(1) is finite for a 3D lattice,.and not finite for a ZD lattice. In the former 
case, the temperature scale (4.7) evaluated for p = 2rJ defines the critical temperature, 
Tc. Table 1 contains values of Tc for the three cubic lattices for S = f ,  together with 
corresponding values obtained from extensive series expansions. The level of agreement 
between the two sets of results is tolerable; one might reasonably expect the spherical model 
to be least reliable in the extreme quantum limit, S .= f, and progressively more reliable 
with increasing values of S. Because I(1) > 1, for the cubic lattices, we conclude that 
Tc(x-y) > T&otropic). For S = f the same result is obtained from series expansions, cf 
table 1. 

In the immediate vicinity of the critica! temperature, the in piane susceptlbility takes on 
the form proposed by Ornstein and Zemike, namely 

xo(d = ( N / 2 r  JP’)/(K; + 4’). (4.10) 

Here, the inverse correlation length, K,,. satisfies (p is measured in units of 2 r J )  

p 2 K~ 2 -  - (p - 1) limit p + 1+ (4.11) 

and the length p is defined by the small-q expansion of the geometric factor 

(4.12) y q = l - p q  2 2  +.... 
From (4.7) and the properties of the extended Watson integral in the limit p + ~ l i  

pKo = (p - 1)’” E (T - Tc)/Tc (4.13) 

and only the coefficient of proportionality differs for the x-y and isotropic Heisenberg 
models. The coefficient~is reduced in the x-y model by a factor (21(1) + 1)/31(1). 

Turning to the equivalent analysis for a 2~ lattice, the key relation is 

I ( @ )  + (2 /7~)1n{2&/ (p -  1))  limit p + I+ .  (4.14) 

We conclude that, there is no phase transition at a finite temperature, a finding that is in 
accord with the Mermin-Wagner (1966) theorem. If the inverse correlation length for the 
corresponding isotropic Heisenberg model is denoted by 4, we find for T -+ 0 

( K O / K ~ )  = exp[--nTm/4TJ. (4.15) 

Thus, just as we found for 3D, in 2D the reduction in spin isotropy increases the correlation 
length. The effect is still pronounced at moderate temperatures, e.g. with [T /3T , )  = 0.259, 
one finds PKO =~0.33 and p& = 0.42. 
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4.2. Model I1 
The two susceptibilities are 
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X o ( d  = N / ( I L o - ~ J Y ~ )  (4.16) 

and 

x (4) = NI(@ - 27 J Y ~ )  (4.17) 

with 

j ~ . = p ~ - 2 B .  (4.18) 

For the particular example of classical spins with one degree of freedom (classical Ising 
variables, or sticks, capable of assuming two discrete orientations) we have demonstrated 
that the conventional derivation of the spherical model, through use of the saddle point 
method to calculate the partition function, leads to (4.17) and the appropriate limit of the 
temperature scale (4.21). Looking at (4.16-4.18). for B > 0 (axial anisotropy) the out of 
plane fluctuations become critical at f i  = 2rJ ,  and at this temperature KO is finite, namely 

PKQ = (B/rJ) ' i2 .  (4.19) 

In the opposite case, B < 0 (planar anisotropy), the propedes of the in plane and out of 
plane fluctuations are reversed. 

The temperature scale is set by the relation ( p  and ~0 in units of 2rJ)  

T12Z(PO) + I ( @ ) }  = 3% (4.20) 

For B > 0, the critical temperature is 

T,[21(1+ 2b) + Z(1)) 2- 3T, (4.21) 

where b = B/ZrJ .  Since I ( x )  is a monotonically decreasing function of its argument, 
we conclude that a finite uniaxial anisotropy increases the critical temperature above the 
value for the isotropic Heisenberg model. This is in line with physical intuition, since a 
uniaxial anisotropy effectively enhances the exchange interaction. For a given value of 
IBI, the critical temperature of the model with a planar anisotropy is intermediate between 
the values for the isotropic and uniaxial anisotropy models. This finding differs from that 
obtained in the molecular field approximation, where planar ( B  < 0) anisotropy reduces 
the critical temperature below T,, In the extreme limit IBI + 60 our spherical model 
calculations give Tc(isotropic) < T,(x-y) c T,(planar) c T,(axial) < T,,. Of course, in 
the molecular field approximation this particular l i t  has no real physical meaning since in 
this approximation T,(planar) and T,(axial) are unbounded, see e.g. the book by Lovesey 
(1987). 

The in plane and out of plane inverse correlation lengths are denoted by KO and K ,  

respectively. The relation 

p2K2 = p2.; --2b (4.22) 

follows from (4.18). 
For the 2D model, the ratio of the correlation lengths at low temperatures takes on 

extreme values. By low temperatures we mean T 6 (TJ.5). In this region, the 'critical' 
mode has a very long correlation length whereas the 'non-critical' correlation length saturates 
to a value determined by the anisotropy parameter, B. As an example, consider a uniaxial 
anisotropy, and take b = (Bj2r.Z) = 0.09 and ( T I T , )  = 0.19. We find for this case 
( K ~ K o )  = 5.4 x 10-9. 
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5. Decay rates: model I 

We will analyse the dynamical correlations in our models in terms of decay rates derived 
for the coupled mode equations provided in section 3. The decay rates for the in plane and 
out of plane fluctuations are denoted by ro(q) and r(q), respectively. 

From (3.2) and (3.3) we obtain 

x(q)r(q) = T ( 2 r J / N ) 2 x ( y q - p -  ~ p ~ 2 x ~ ~ ~ x ~ ~ ~ - - P ~ / ~ r o ~ ~ + r o ~ ~ - - P ~ ~  (5.1) 

and 

P 

(5.2) 

We are interested in long-wavelength fluctuations, and therefore consider the limit q + 0 
in (5.1) and (5.2). Furtherhore, we focus on the temperature interval immediately above 
and at the critical temperature (for 2D models the appropriate temperature range is T << J ) .  
The necessary condition is that the susceptibility for the critical mode is ex'uemely'large at 
the ordering wave vector. 

Consider, for the moment, a 2D lattice and a ferromagnetic exchange coupling (F); one 
finds from (5.1) and (5.2) 

where for a spatial dimension d 

A' = T(rJuo)/n"' (5.5) 

and uo is the area (volume) of a primitive unit cell, e.g. for a square lattice uo = a i  and for 
a body centred cubic (BCC) lattice uo = a&l2 where a0 is the cell dimension. The functions 
fo(q) and j ( 4 )  satisfy the integral equations 

and 

(5.7) 

In  arriving at (5.6) and (5.7) the upper limit of integration over the Brillouin zone has been 
extended to infinity. An inspection of the integral equations reveals that, in the limit q -+ 0, 
f&) and j ( 4 )  are both benign functions. Hence, a tolerable approximation is obtained by 
replacing the functions by their values at q = 0. Our estimate for the decay rates of the 20, 
F x-y model are 

ro(q) = 0.621A(~,Z f q2)/Ko and r(q) = 0.403AqZ/Ko. (5.8) 
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Recall that, for d = 2, the quantity A a Til2. Even so, r(q) increases with decreasing 
temperature since, in the limit of low temperatures, 
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PKO = ( p  - 1)’/’ - 2&exp(-3nTm/4T). (5.9) 

The corresponding value of rO(0) is very small. 
The relations (5.3) and (5.4) are convenient also for the 3D lattice, where now one can 

reasonably set T = T, in the quantity A, defined in (5.5). At the critical temperature, 
KO = 0, the integral equations for fo(q) and f(q), which correspond to (5.6) and (5.7) for 
ZD, admit non-trivial solutions; 3D, F, KO = 0 

ro(4) = 0.816Aq3/’ and r(q) = 2ro(q). (5.10) 

On the other hand, for KO # 0 we obtain the estimate 

ro(q) = 0.711A(~i f q Z ) / K A / Z  and r(q) = 0.553AqZ/K~“. (5.11) 

It is interesting to observe that the critical properties of the 3D, F x-y model are the same 
as those of the AF isotropic Heisenberg model. 

For the x-y model, the decay rates r(q) and ro(q) are homogeneous functions of the 
form 

q”’Ri ( q / K o )  

where R l ( x )  is usually referred to as a scaling function. In this context, the foregoing results 
are the explicit forms of the scaling functions for in plane and out of plane fluctuations in 
the extreme limits x + 0 and x + CO. Applied to the 3D, x-y model we conclude that the 
dynamic critical exponent z = (d/Z) = 2. As we have remarked, this value for the exponent 
is the same as for the isotropic AF model (Hohenberg and Halperin 1977). The value 
z = (d/Z) for the x-y model is consistent with calculations based on the renormalization 
group method. 

As the final topic in this section we consider the behaviour of the antiferromagnetically 
exchange coupled (A@ x-y model. We remarked in the introduction that the critical 
properties of the x-y model are independent of the sign of the exchange coupling (Betts 
1974), so, the following working, to some extent, is to confirm that our analysis is sound 
with respect to this aspect of the model. 

Turning back to the in plane susceptibility (4.4) we observe that after replacing J by 
-J the ordering wave vector is w ,  which satisfies yn+w = -y4. Thus, in (5.1) and (5.2) 
for the decay rates it is convenient to expose the influence of the incipient AF ordering 
by shifting the summation variable p + p + w. Evidently, there is a coupling between 
fluctuations that take place near the Brillouin zone centre and at the ordering vector, w. In 
consequence, we must construct a second pair of equations for the in plane and out of plane 
fluctuations that occur in  the vicinity of w; we denote the corresponding decay rates by r$ 
and rw. 

For a ZD lattice, we find 

ro = rW = (A</Ko)  (5.12) 

where C is a function of K O ,  and is determined by the equation 

C’ = ln(1 + C/0.621~op). 
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In the limit T + 0 

r, = rw = 4 J z ~ .  
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The value of r ( q )  is identical to the same function in the ferromagnetic model, and 
r r ( q )  = ro(q). These are the results we anticipated. 

Finally, we mention our results for the decay rates of the 3D, AF x-y model at T = T,. 
These are 

ro = rw = 3 . 6 i o ~ / p ~ / ~  

together with r(q) = 2r,W(q), and rr(q) is identical to ro(q) for the 3D, F x-y model 
given in (5.10). ~ ~ 

6. Decay rates: model II 

The method of analysis we use for the Heisenberg model supplemented by a singlesite 
anisotropy, denoted by model II. is the same as that applied in the previous section to the 
x-y model. In view of this, in this part of our report we do not give details of our working, 
and focus on the results. It is convenient to employ the non-universal, material constant A 
defined in (5.5). 

A way of expressing the basic differences between two models is to contrast the 
homogeneous functions for the decay rates. For model I, we established that the decay rates 
can be expressed in the form qJ12Rl(q/Ko), where Rl(x)  is a so-called scaling function. 
Extending this concept to the decay rates for a ferromagnetically coupled model 11, as 
proposed by Riedel and Wegner (1970), we have established that the in plane and out of 
plane decay rates are of the form 

- 

q(d+2)/2Rz(q/K, q / K o ) .  

For a ~3D lattice, the dynamic critical exponent z = (d + 2)/2 = 4 is the same as for the 
isotropic F model. We turn now to the task of obtaining the interesting limiting values of 
the scaling function for 20 and 3D lattices. 

For a 20  lattice and a ferromagnetic exchange coupling, the in plane and out of plane 
decay rates are. 

(6.1) 

where K and KO are the out of  plane and in plane inverse correlation lengths, respectively, 
and we define B = K / K O .  The function < in (6.1) satisfies 

E = - ( 1 + P ) l n B Z + ( P - 1 ) l n ( B 2 / 5 ) + [ ( 1 + t ) ( B Z - 1 ) + ’ ( 1  -t)21Q(6,t) (6.2) 

where for a = ( ( E  + 8’)’ - 4E) > 0 the function Q(6,E)  is 

Q(B,<) =~-~/~ln{(1 /4P)[ ( t  +eZ)  +aLi2l21 

‘I2 and r ( q )  = iApq2(K2 + q2)/Ko$ 2 112 row = ~ A P ( K ;  + q  )P  

and for b = I45 - (< + > 0 

Q ( B , c )  = (2/b1’*) tan-’{bl/*/({ + 6”)). 
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For planar anisotropy, rO(0) is very small and (r(q)/q2} very large in the limit of low 
temperatures, 0 = @ / K O )  4 m. In this limit, -+ 1.2410, and 

ro(0) = 0 . 6 2 1 A p ~ ~ o  and {r(q)/q2} = 0.402Ap(K/Ko) (6.3) 

where P K  = J(2b). 

0 + 0, and here e satisfies 
Looking next at the case of axial anisotropy, the low-temperature limit corresponds to 

= ln(.$/e4). (6.4) 

rO(0) decreases and [r(q)/q2) increases with increasing temperature. Representative 
examples of the temperature dependence of the decay rates are illustrated in figure I. 
In viewing the results, bear in mind that the calculations do not involve explicitly the 
temperature scale set by the spherical model; the latter enters only in so far as we use the 
susceptibilities (4.16) and (4.17) in the construction of the integral equations for ro(q) and 
w. 

0 0.7 
l a )  PK 

Figure 1. The temperature dependence of ro(0) and [r(q)/yZ) for the 2r1, F uniaxial model Ii 
wilh B =- 0. The quantities plOned as B function of he inverse correlation length. x ,  are 
To U (ps,)2c'/2 and [r(q)/q2) U (S2/f1/2), where8 = ( K / K O )  and 5 is determined by (6.2). 

Next on the agenda is the 3D, F version of model 11. For the planar model at T,, 
P K  = J(2b) and 

ro(q) = 0.816Apq3'% 

r(q) = 1.632Apq3/'(~' + q ' ) / ~ .  
(6.5) 

It is interesting to observe that these decay rates depend explicitly on the anisotropy 
parameter. For IQ > 0, the decay rates are 
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2 

F i w  2. The variation of ro(0) and (r(q)/q') for the 30; F model II with I(, and WO 

values of B > 0. me displayed quantities are r,,(o) c( ( p x n ) 5 / 2 ~ 1 / 2  and (r(q)/q2) C( 

( @ W ) z / ~ 1 ~ z ( p K o ) 3 / 2 )  and is determined by (6.7). 

where the dimensionless function { satisfies 

These results and the results (6.5) are two limiting cases of the scaling behaviour contained 
in the general ( K O  > 0) relation (6.6). 

The corresponding results for axial anisotropy follow from (6.6) by noting that for e = 0 
the solution of (6.7) is { = 1.770. Hence, we conclude that for axial anisotropy the critical 
dynamics is conventional. 

To illustrate the temperature depndence of rO(0). and (r(q)/q2] evaluated for q + 0, 
it is useful to write the results in the form 

ro(0) = 1 . 4 8 9 A ~ b ~ / ~ { ' ~ ~ / I 9 ~  - lI5I4 
(6.9) 

where, as before, b = lB/ZrJl, and the 1en-e p is defined through (4.12). So, the 
temperature dependence of ro(0) and {r(q)/q2] is given by 

{r(q)/q2} = o . 7 4 4 ~ ~ ~ ~ ~ b ~ / ~ e ~ / ( ~ ~ / ~ 1 e ~  - 1p4) 

ro(o) O[ p2/1e2  - 
(r(m21 e 2 / ( p j e 2  - 111'4) ( p K ~ Z / ~ ( p K ~ ) ~ ~ ~ b ' ~ ~ i .  

C( ( p ~ ~ ) ~ / ~ { ~ / ~  
(6.10) 

These functions are plotted in figures 2 and 3. The non-universal material constant, A ,  is 
assumed to be a constant, and its value is given by (5.5) evaluated at T = Tc. For axial 
anisotropy the in plane decay rate rO(0) increases and the out of plane-{r(q)/q2] decreases 
as 9 = ( K / K O )  deceases, i.e. as the temperature approaches Tc. For planar anisotropy, the 
temperature dependence is slightly more complicated, but the limiting behaviour, 9-I + 0, 
is the reverse of that found for axial anisotropy, with {r(q)/q2} increasing and ro(0) 
decreasing as T -+ T, for B 4 0. 
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Figure 3. A compmtive study of lhe temperature dependences of the decay rates for planar and 
uniaxid anisotropy in the ID, F model 11. ne functions displayed are rdo) E p / p 2  - 1lSN 
and {r(q)/q2) a e2/($1/21e2 - W), plotted as functions of e-' (planar) and e (axid, cf 
figure 2). 

Finally, we turn to the behaviour of the decay rates for an antifemomagnetic exchange 
coupling. As in the case of the x-y model, the number of decay rates is doubled on changing 
from F to AF, since it is necessary to consider modes around the centre of the Brillouin zone, 
as with F, and the wavevector, w, that defines the incipient AF order. The main interest is 
the case of AF axial anisotropy, for the critical dynamics with planar anisotropy is the same 
for F and AF. 

For a 2D lattice and an antiferromagnetic exchange coupling the decay rates are 
conveniently expressed as 

r(q) = 2AqZg/Ko 

(6.1 1 )  

z w  rr(4) = 2A(K,2 -t 4 )go / K O .  

Here, as in section 5, Y(r:) is the decay rate for the out of plane (in plane) fluctuations for 
a wave vector q measured relative to the incipient antiferromagnetic ordering wave vector, 
w. The dimensionless amplitudes in (6.11) satisfy 

gg,W = (1 +~L)/16 

gogw = W  + g o / g r ) / W  +&)I  
(g,")' = (1 + ~)/{16(expKl+ AZ/W -b)'I - 1)) (6.12) 
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The sign of b = B/2rJ in these equations corresponds to a uniaxial anisotropy. Amplitudes 
for the planar anisotropy follow by changing the sign of b in (6.12) and in the relation 
between p and /LO (4.18). 

For the latter case it can be shown that, in the limit KO + 0, 
(r(q)/q2] -+ 0.570A(1+ b)'12/4 and r;(o) + 0 . 8 7 8 ~ ( 1  + b ) 1 / 2 ~ 0 .  (6.13) 

figure 4. Corresponding results for a uniaxial anisotropy are given in figure 5.  
.The full temperature dependence of these decay rates, and ro and P ( q ) ,  are illustrated in 

, 

0.7 0 0.7 P" 0 
PXO 

Figum 4. The temperature dependence of the decay 
rates for the U), AF p l m ~  model I1 with I61 = 0.10. The 
quantities plotted against PKO are (r(q)/q2) - (g/pKiI) 

(a), I'"'(0) - f(PK)2&?"'/PKid (b). rll - (PKoh'd (e) 
and rb(0) - ( P K a g t )  (d ) .  

Figure S. Re~ullS thal conespond to figure 4 but here 
fora uniaxial anisotropy h = 0.20. and functions plotted 
against PE. 

(6.15) 

Turning to the 30, AF model II we find at the critical temperature 
r ( q )  = 2r;(q)  with r;(q) = 1.155A(1 +b)'Pq3l2.  (6.14) 

These results are for a planar anisotropy, and b is the magnitude of (B /2rJ ) .  With a uniaxial 
anisotropy the critical dynamics is conventional and the next set of equations applies. 

Following the presentation of the 2D decay rates we choose to write 
r(q) = 2Aq2g/K:l2 

r"u(q) = 2A(K2 + q2)gw/KAl2 

ro = 2AgoKo 3/2 

2 w 112 r a ? )  = 2 4 4  + 4 )go / K O  

in which the dimensionless amplitudes are derived from 
gg; = 4 1  + /1)/32 

gwg; = (n/2(1+ !Jo)lIl+ (1 +go/go ) I 
g;C& + g) = I 4  - b)* /2 (1+  @)H1 + (go"/(& + g)) 

go(# + gw)  = (XU + P ~ ) / ~ I I ( ~  - e ) V +  e)/u + 

w 112 -I  

(6.16) 
I12 --I 1 

+a)]  
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where 6 = @/KO) and 
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az = (1 + fPg"/go")/(l+ g"/go"). 

In these equations the sign of b corresponds to a uniaxial anisotropy. 
Figures 6 and 7 contain representative values of the decay rates (6.15) plotted against 

the appropriate critical inverse correlation length. The trends displayed in these two figures 
are readily understood from the defining equations and (6.16). For the uniaxial anisotropy 
the amplitudes are benign functions of K, as aniticipated. In the case of a planar anisotropy 
all amplitudes bar go are benign; for KO + 0 the amplitude go grows strongly so that ro 
increases. 

30. M, B c 0 
b = 0.20 '1 

I 3 o . A F . 8 > 0  
b I 0.20 

0 

1 

Figure 6. The temperature dependence of the decay 
rates for the 3 0 ,  AF planar model II with Ibl = 0.20. 
The quantities plotted against pxn are (r(q)/q2) - 
sl(PKn) 'r '  (a), r"(0) .-. [@X)z.?"' / (PKn)Liz~ (b). 
r n  - c 0 K 0 ) 3 i z s n  (c) and rt(0) - 

Figure 7. Results that correspond to figure 6 but here 
for a uniaxial anisotropy b = 0.20, and functions plotted 
against the critical inverse correlation length, x .  

(4. 

7. Conclusions and discussion 

By way of orientation to the special features of the two anisotropic models we have discussed 
in the text we record the decay mtes for the isotropic Heisenberg magnet. The decay rate 
for this model is denoted by r i (q ) .  For a ferromagnetically (F) coupled 3D magnet at T, 

ri(q) = $Apq5". (7.1) 

ri(q) = f(z/6)'"Apq 2 K 1/2 

ri(q) = i A p q Z .  (7.3) 

For q << K 
(7.2) 

and the corresponding result for the ZD lattice is 
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Turning to the isotropic antiferromagnetically (AF) coupled isotropic Heisenberg magnet one 
finds for a 3D lattice and a temperature= T, 

ri(q) = 2.309Aq3/’ and rp(q) = $ri(q) (7.4) 

where ry(q) is the decay rate for fluctuations near the antiferromagnetic ordering wave 
vector, w. The corresponding results for T z T, and q << K are 

ri(q) = 0.782AqZ/K’i2 and y ( q )  = 1.005A(~’ + q 2 ) / K i i ’ ,  (7.5) 

Lastly, for a ZD AF, in the limit of very low temperatures 

ri(q) = o . ~ ~ o A ~ * / K  and r’”(q) = 0.878A(~’ +&/IC. (7.6) 

Here, and in all other results in this and the preceding. sections, the material constant, A ,  is 
defined in (5.5). 

The main outcome of the reported work on anisotropic models are explicit results for 
the decay rates. In the case 0 f ~ 3 ~  models we have, in the general case, examined separately 
the critical domain (T = TJ and the non-critical domain. On the other hand, for ZD systems 
no such distinction arises because there is no long-range order at a finite temperature. 

In  all, there is quite a large number of special cases of interest. Those not explicitly 
covered in our discussions can be deduced from the provided formulae. In a good 
few cases, simple algebraic results are not obtainable and the formulae must be solved 
numerically. This is particularly the case for model I1 with an AF exchange coupling. We 
have just reported a few representative examples. To facilitate finding results, and making 
comparisons between properties of the  various^ models, we have gathered some results in 
tables 2-4. Here, and in most  other places, we have expressed results in terms of the 
inverse correlation lengths. Thus, the results do not depend explicitly on spherical model 
temperature scales. 

Table 2. lsotmpic model. Decay rates for 20 and 30  lattices, and F and AF coupling. The 
Hamiltonian for the spin system is given by (2.2) wilh B = 0. 

Table 3. x-y, model I. Decay ratcs for the x-y model. The notation in the right-hand column 
for decay rales for F coupling is T(F) or ro(F), i.e. the out of plane (AF) and (F) decay rates are 
the same, in the appropriate limits. 

F AF 
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Table 4. Planar. model 11. Decay rates for the planar version of model I1 wiih P and AF exchange 
coupling. Additional results are provided in section 6. 

F AF 

Use of decay rates, or the so-called Markovian approximation, is something of a coarse 
measure of the propedes of long-wavelength spin fluctuations. It tells us nothing reliable 
about the shape of the power spectrum. Therefore, while they are valuable guides to 
the basic statistical mechanics of a model, a confrontation between experimental data and 
theoretical findings will most likely require more accurate information on the spectrum if 
it is to be really meaningful. In the context of the present study this means finding full 
solutions of the coupled mode equations provided in section 3 by numerical analysis. 
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